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Langevin dynamics computer simulations have been performed for a two- 
dimensional Lennard-Jones fluid quenched into the coexistence region of its 
liquid-vapor phase diagram. For late stages of the phase-separation process, the 
average radius of the liquid clusters is found to grow proportional to (time) 1/4. 
This growth law is analyzed theoretically and compared to recent molecular 
dynamics and Monte Carlo results. Details of the different simulation methods 
are critically discussed. 
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1. I N T R O D U C T I O N  

The development of spatial phase coexistence in a physical system undergo- 
ing a first-order phase transition is a complex, highly nonlinear 
phenomenon. Of particular interest is the dynamics of the phase separation 
process, i.e., the decay of an originally homogeneous system into the 
spatially inhomogeneous equilibrium stateJ 14) A typical model system 
studied in this context is a Van der Waals-like liquid, which has been 
rapidly quenched into the coexistence region of its liquid-vapor phase 
diagram. (6) Such a homogeneous system breaks up into regions of different 
densities finally leading to the coexistence of macroscopic gas and liquid 
phases. 

The initial stage of the phase-separation process is usually described as 
either droplet nucleation or spinodal decomposition, depending on whether 
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the respective system is originally quenched to a metastable state or to an 
unstable state within the coexistence region of its phase diagram. After a 
short transient period, the separation process reaches in both cases a 
situation in which small domains are formed whose internal density is 
already equivalent to that of the equilibrium liquid. With increasing time 
these domains coarsen in order to reduce the system's excess free energy 
associated with the "surface" of these spatial inhomogeneities. 

Eventually, the average radius R(t )  of the little liquid clusters exceeds 
the microscopic length scale of the system. From that time on, the 
microscopic details are expected to become less important. The growing 
cluster radius R(t )  is assumed to be the only relevant length scale of the 
problem. Moreover, dynamic scaling of the system evolution has been 
proposed (7) in terms of a homogeneity relation for the cluster peak of the 
time-dependent structure factor S(k,  t), 

S(k,  t) = {R( t ) }  a S (kR( t ) )  (la) 

where d is the dimensionality of the system and S is a scaling function. 
Theoretical considerations 18'9~ and computer-simulation results (6'1~ 
indicate that the growth law for the cluster size R(t)  and the decay of the 
excess internal energy E ( t ) -  E(oe) might have power law form: 

R(t)  w_ t x (lb) 

E ( t ) -  E ( ~  ) ~ t - r (lc) 

In analogy to the theory of critical phenomena it has been suggested (4'5) to 
characterize the phase-separation process in the various systems by a small 
number of "universality classes," each class being determined only by very 
general properties. These may be, e.g., the degeneracy of the ordered state 
or the conservation law governing the dynamics. However, in contrast to 
the expected universal behavior different growth laws have been observed 
in constant temperature molecular dynamics (MD) and Monte Carlo 
(MC) studies for basically the same physical system, namely, a two-dimen- 
sional one-component system undergoing spinodal decomposition/6'11) In 
both cases one has found good scaling of the spinodal peak of the structure 
factor according to (la) and growth laws of the form (lb) have been obser- 
ved for the average cluster size, but with different exponents X for constant 
temperature MD and MC simulations. Details of the different simulation 
procedures will be discussed in the following chapters of this paper. Note 
however, that both MC and constant-temperature MD simulations con- 
serve neither the total energy nor the total momentum of the system. 
Hence, it is not simply the presence or absence of these conservation laws 
which explains the different growth behavior. To investigate the origin of 
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these differences, we performed new simulations, again for the same 
physical system, but using MD simulations with a stochastic heat bath 
coupling. This technique will be referred to as Langevin simulations. 

Details of the investigated model system will be described in Section 2 
of this paper. The model may be regarded as a fairly realistic representation 
of, e.g., a rare-gas monolayer physisorbed on a smooth substrate. The sub- 
strate may be assumed to act as a thermal reservoir whose temperature is 
controlled externally. We are interested mainly in comparing and analyzing 
the different simulation techniques for this system. The numerical results 
are presented in Section 3. It is worthwile to stress already at this point 
that one has to regard the details of the simulation procedure as an integral 
part of the studied model system. In the case of constant energy conditions 
a system which has been initialized in a nonequilibrium state and which 
evolves towards equilibrium in general cannot have a constant tem- 
perature. But only under constant energy conditions MD simulations 
mimic the true physical time evolution of the system, because MD simply 
involves the solution of Newton's equations of motion. It will be discussed 
in this paper in what sense the dynamics of a nonequilibrium process under 
constant mean temperature conditions may be simulated by constant tem- 
perature MD or by Langevin dynamics. Generally, there is no a priori tem- 
poral evolution in MC simulations. However, one often successfully dis- 
cusses a MC dynamics by taking the random MC steps as a measure of a 
time unit. This procedure can be justified in many cases through the 
master-equation description which relates transition probabilities to tem- 
poral changes. ~12) 

In Section 4 we present a Lifshitz-Slyozov type of analysis for the 
growth mechanism of the liquid clusters. We trace back the origin of the 
differences between constant-temperature MD simulations and Langevin 
simulations to the underlying microscopic dynamics of the atoms in the gas 
phase. In Section 5 we summarize our results. We conclude that the 
influence of the microscopic dynamics on the scaling properties of the 
phase-separation process indicates that in contrast to the theory of critical 
phenomena there might be less "universality" in the domain growth than 
originally expected. The fractal dimension of the growing clusters is 
analyzed in the Appendix. 

2. N U M E R I C A L  S I M U L A T I O N S  OF PHASE S E P A R A T I O N  

We study a two-dimensional system of 5041 atoms interacting through 
the Lennard-Jones potential 

V(ro. ) = 4e - (2) 
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Here, r U is the interatomic separation and e, ~ are the Lennard-Jones 
parameters. This potential is known to be a fairly good representation of 
the interatomic potential for rare-gas atoms. Thus, with appropriate 
parameters e, a our system may be considered as a model for physisorbed 
rare-gas monolayers on graphite, where a structureless substrate can be 
assumed. (6) 

The molecular dynamics (MD) method ~3~ invoves the solution of the 
equations of motion for the particles of our system: 

dn 
--'---2/= Fi (3a) 
dt 

where 
1 

V , = - V i ~  ~ V(r~) (3b) 
i , j  

( i~ j )  

During a MD simulation the total energy and the total momentum is con- 
served, i.e., one employs the microcanonical ensemble. The kinetic energy 
can be rewritten as 

p~ d 
~ -~ -~ X k  s T (4) 

where d denotes the degrees of freedom per particle. After the system has 
acquired equilibrium the time average of T is usually referred to as the tem- 
perature of the system. However, in a typical experimental situation the 
substrate temperature determines the temperature of the rare-gas 
monolayer. Thus the temperature instead of the internal energy is the 
independent variable. Several numerical procedures have been proposed to 
fix the mean temperature of the model system. (~2~ As far as equilibrium 
properties are concerned these procedures are expected to be equivalent. 
However, the dynamical phase-separation process is a nonequilibrium 
phenomenon and the definition of a temperature via Eq. (4) is a priori not 
justified. 

The first of the two procedures which we want to discuss in the present 
paper, has been employed in previous studies of spinodal decomposition in 
atomic systems. In this simulation technique the atomic velocities are 
renormalized after each iteration step so that the mean kinetic energy 
corresponds to the desired temperature. The underlying assumption is that 
the kinetic energy acquires its equilibrium value in a short period after the 
quench and that the late stages of the evolution are governed solely by the 
minimization of the potential energy associated with the liquid-vapor inter- 
face. Since only the absolute values of the atomic velocities are changed 
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through the rescaling the particles perform straight flights between sub- 
sequent interatomic collisions. Nevertheless, with this procedure, one looses 
both total energy and total momentum conservation, irrespective of the 
size of the simulated system. We refer to this method as "velocity renor- 
realization" (VR). To determine the relaxation of the internal excess energy 
we repeated a run of Ref. 6. In addition, we checked the resulting velocity 
distribution function, which is an important test since we are dealing with a 
system of very low initial density and the velocity rescaling provides no 
mechanism to thermalize the system. 

A second procedure to fix the mean temperature is to simulate the 
system coupled to a heat bath at the desired temperature T. According to 
Onsager and Machlup (14~ this heat bath coupling is described by a friction 
term -Fp~ and a random force qi(t). The associated equations of motion 
are then coupled Langevin equations 

dP__2~ = 
dt F i - Fp~ + q~(t), i=  1,..., N (5) 

The stochastic force qi(t) is assumed to be a Gaussian random vector with 
the second moment of its components related to the damping F and the 
bath temperature T by the dissipation-fluctuation theorem 

(rl~(t) rl~(t') ) = 2mks TF~ij 6(t - t') (6) 

where kB denotes the Boltzmann constant. 
In contrast to the VR case the propagation direction of the atoms 

changes randomly due to the noise-source and the particles perform a dif- 
fusive type of motion. 

In the previous studies (6) the fifth-order Nordsiek-Gear algorithm has 
been employed to solve the coupled set of deterministic differential 
equations (3). However, higher-order "predictor-corrector" schemes are not 
suited to include the effects of stochastic forces consistently. (15) Therefore, it 
is more appropriate to solve Newton's equations of motion by using the 
following two-step difference formula(~6): 

v i t + - ~  ~vi  t - - -  +--Fi(rl(t)'""rN(t))m (7a) 

r,(t+ At)~r~(t)+ Atvi t + - ~  (7b) 

which is essentially equivalent to Verlet's centered difference scheme (17~ 

(At)  2 
r i ( t + A t ) + r i ( t - A t ) - 2 r i ( t ) =  Fi(rl(t),..., rN(t)) (8) 

m 
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In order to integrate the stochastic Langevin equations, formulas (7) have 
to be modified to include the damping and the random noise source. For  a 
discussion of details of this technique we refer the reader to the work of 
Schneider and Stoll. {18) Letting F -~0 ,  Eqs. (5) tend to the Newtonian 
equations of motion (3) for a microcanonical ensemble. Therefore, F must 
not be chosen too small in order to reach local thermal equilibrium in a 
reasonable time interval. However, to reduce the modifications of the 
dynamic properties due to the damping, i.e., to assure that the system is 
not in the so-called Smoluchovski limit 12  ~> 2 ~- 2/A, F is bounded by the 
condition 

F-I~> A (9) 

The results of the Langevin simulations are presented in Section 3.2. 
In all numerical procedures we have used a very small integration step 

of 0.01 ps. This corresponds to A = 0.005 in our units of time. For most 
Langevin simulations we have chosen F =  2.5 which is consistent with con- 
dition (9). Some additional runs with F =  1.25, 5.0 were performed in order 
to check the sensitivity of the results with respect to changes of the damp- 
ing constant. The remaining parameters which we have to specify are the 
temperature and the area of the system. The constant area is equivalent to 
a constant mean density since we are dealing with a fixed number of atoms. 

3. S I M U L A T I O N  RESULTS 

3.1. Veloci ty  Renormal izat ion (VR)  

For the method of velocity rescaling it has been shown (6) that the 
memory of the initial configuration is already lost after 3-4 ps. Therefore, it 
is sufficient to initialize the system by placing the atoms in a triangular lat- 
tice at a density p*=0 .325  with a Maxwellian velocity distribution 
corresponding to T* = 0.45 (p* = p~2, T* = k~ T/e). Hence, the density is 
the critical density for liquid vapor coexistence, whereas the temperature is 
well below the critical temperature T~* = 0 . 5 6 .  (6) 

The detailed analysis of the numerical data has been reported in Ref. 6. 
For  later comparison, we present in Fig. 1 the average size R(t)  of the for- 
med liquid clusters as a function of time on a double logarithmic scale. In 
agreement with previous results we find a crossover for t > 30 ps to a scal- 
ing regime in which R(t)  exhibits a simple t 1/2 power-law behavior. 

Let us recall that around 30 ps locally the density extremes have 
already been achieved, i.e., the density within the clusters reaches that of 
the equilibrium liquid. The remainder of the phase-separation process is 
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Fig. 1. Cluster size R(t) as a function of time for velocity rescaling (VR), 

governed by the growth of isolated clusters. This growth process has been 
explained in terms of condensation and evaporation of individual atoms 
(condensation/evaporation mechanism). 

To complete the analysis of the VR case we calculated the velocity dis- 
tribution function for the atoms at various times during the simulation. We 
did not find any significant deviation from a Maxwellian velocity dis- 
tribution. Therefore, we conclude that starting with a proper velocity dis- 
tribution, the velocity rescaling procedure does not lead to artificial 
features in the distribution function even though we deal with a system of 
fairly low average density. 

3.2.  L a n g e v i n  S i m u l a t i o n  

In the Langevin dynamics method, the simulated system is coupled to 
a heat bath which gives rise to a damping term and to a stochastic force in 
the equations of motion. We employed this method to simulate spinodal 
decomposition in the two-dimensional system described above. To 
investigate the relaxation dynamics of the kinetic energy, we initialized our 
system at a density p*=0.325 and at a temperature T*= 1.0, i.e., well 
above the coexistence regime of the liquid-gas phase diagram. Then we 
quenched the system into this coexistence regime by instantaneously chang- 
ing the bath temperature to T*= 0.45. We observed a rapid relaxation of 



1078  S c h 6 b i n g e r ,  K o c h ,  and Abraham 

the system's kinetic energy superimposed to the spatial phase separation 
process. 

The kinetic energy per particle as a function of time is shown in Fig. 2. 
It relaxes within 10 ps to its equilibrium value. Because of condition (9) 
this rapid relaxation is clearly not a consequence of an overdamping of the 
system. Moreover, the order of magnitude of the relaxation time is 
independent of the damping constant for our chosen range of values. 
Again, we have checked the velocity distribution and found good 
agreement with the exact Maxwell distribution corresponding to T* = 0.45. 

We analyzed the temporal evolution of the system's morphology and 
determined the average cluster size R(t) (Fig. 3). We observe a short trans- 
ient period for t < 40 ps but in contrast to Fig. 1 the determination of the 
scaling regime appears to be ambiguous. Even though for late times 
~>250ps R(t) evolves according to the power-law (la) with X-~ 1/4 we 
cannot completely rule out the existence of the intermediate interval 
50 ps ~< t < 250 ps characterized by a power-law behavior with distrinctly 
smaller exponent X-- 1/5. Figure 4 shows this feature to be independent of 
the damping constant F. 

Several authors (4'j9'2~ have discussed the situation in which a 
crossover between various power laws for R(t) occurs, leading to a cur- 
vature on a double-logarithmic plot of R(t) versus t. However, in the 
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Fig. 3. Cluster size R(t) as a function of time for the Langevin Simulation ( P =  2.5). 

present study we are not interested in this intermediate regime we only 
want to determine whether one finds scaling at all. A careful analysis of the 
temporal evolution of the atomic configurations suggests that the #/4 
growth stage may be characterized in the same way as the t 1/2 regime in 
Fig. 1. Independent of the simulation method the morphologies 
corresponding to the same value of R( t )  are similar. In Fig. 5, the scaled 
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coarse-grain radial distribution function is presented for various times. 
From the good scaling invariance we conclude as in Ref. 6 that the density 
morphology remains approximately topologically invariant, but the actual 
spatial extension of the density domains expands as R(t). Moreover, we 
show in Section 4 that the ?/4 power-law behavior may be the result of the 
evaporation-condensation mechanism taking into account that in 
Langevin simulations the microscopic dynamics of the atoms between two 
collisions~diffusion instead of straight flight--is different in comparison to 
VR. 

3.3. T ime Evolution of the Excess Energy 

In general, the exponent X in the power law (lb) for the average 
cluster size R(t) is different from the exponent Y in the decay law (lc) for 
the internal excess energy. However, we observe that the late stage of the 
phase separation process is dominated by the growth of isolated clusters. 
Therefore, the excess energy E(t)-Eo~ is basically the total surface energy 
of N(t) liquid clusters of average size R(t) and one expects X and Y to be 
related.(7) 

The excess energy is given by 

E(t)-Eo~ ~-N(t) R(t) d 1 (10a) 

Conservation of the total concentration yields 

N(t) R(t)~ = const (10b) 
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Thus, N(t) can be eliminated and one finds 

E(t)-Eoo~_R(t)  I (11) 

i.e., 

X =  Y (12) 

We show in Appendix A that a Lifshitz Slyozov type of analysis (8~ yields 
the same result. 

In order to check this conjecture we analyzed the potential energy 
data of our various simulations. It turned out to be quite hard to establish 
the asymptotic decay law because the excess energy E ( t ) - E ~  is a small 
quantity and we did not perform sufficiently many independent runs to 
average out statistical fluctuations. Moreover, in the simulations, the final 
equilibrium state is not reached and Eo~ remains unknown. Even if one 
extends the simulation time, finite size effects eventually prohibit the deter- 
mination of the proper value for E~.  However, assuming that the 
equilibrium energy of the system with two coexistence phases will be given 
approximately as the sum of the equilibrium energy of the pure phases plus 
the contribution of the system's interracial energy, E~ could be determined 
from simulations of the liquid-vapor interface. On the other hand, there is 
no reason to expect different E~ values for VR and Langevin simulations. 
Hence one may postulate 

(R and L refer to VR and Langevin dynamics, respectively.) This relation 
can be tested by plotting [EL( t ) -ER( t ) ] t  YR versus t YR- rL. Despite the 
statistical scattering of the simulation results, we find that a combination 
YR = 1/2, YL = 1/4 is definitely not consistent with the data for t > 50 ps. 
Instead the set of parameters 

E~ "~ -2.01 

YR -~ 1/2 

Y~ ~- 1/5 

(14) 

appears to be more appropriate. The time evolution of the excess energy 
for these parameters is shown in Figs. 6 and 7. Whereas (14) confirms 
relation (12) in the case of VR, Fig. 7 provides further evidence for an 
intermediate time interval of the phase separation process preceding the 

822/42/5-6-23 
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asymptotic regime. However, this observation requires further confir- 
mation. In order to ascentain a crossover from Y= 1/5 to Y=  1/4 in the 
scaling regime, additional independent runs are necessary to suppress 
statistical scattering of the data. Moreover,  a determination of E ~  might be 
of value. 

4. A N A L Y S I S  OF THE S I M U L A T I O N  RESULTS 

An analysis of the fractal dimension D (for details see Appendix B 3) of 
the liquid clusters yields D ~ 1.8. However, the most  important  result of the 
different simulations is that the data (Fig. 9) reveal no significant differen- 

A similar analysis of the fractal dimension has been performed recently by R.C. Desai et 
al.(22) 

40ps 100 ps 

60 ps ?00 ps 

100 ps 700 ps 
Fig. 8. Snapshots of the cluster growth pattern obtained from velocity rescaling (VR) (left 
column) and Langevin dynamics (ight column). Each pair of snapshots is chosen to have 
equal mean cluster radius R ( t ) =  4.7, 5.3, 7.1. 
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ces in the structure of clusters obtained with VR or Langevin dynamics. In 
addition, atomic configurations are similar if chosen in such a way that the 
corresponding values of the mean cluster radius R(t )  agree (Fig. 8). The 
major difference between the VR and the Langevin simulation results is the 
different growth-law exponent X. In this respect the Langevin simulation 
results are in agreement with the growth law obtained with MC 
simulations of the kinetic Ising model (cf. MC ! in Ref. 11). 

In Ref. 6 an asymptotic analysis of a cluster growth equation has been 
presented, which explains the exponent X= 1/2 found for VR. In the 
following, we want to show how this analysis may be modified to be also 
consistent with the Langevin simulation results. The original Lifshitz- 
Slyozov analysis, (8) which yields X=  1/3, does not apply here, because it has 
been performed for a two-component system. 

Under the assumption that the number of gas atoms impinging on a 
liquid cluster is proportional to the thermal velocity of the atoms, the 
equation 

d-~ ~vth R~(t) 

has been derived for the average cluster radius R. (6'25) Here, Rc(t) is the 
radius of the critical cluster, which is inversely proportional to the super- 
saturation of the gas phase. The concept of a critical cluster is appropriate 
since, as already mentioned in the Introduction, after the initial phase 
separation period there is no difference in the morphology of systems 
initially quenched to an unstable or to a metastable state of the phase 
diagram. With 

Rc(t)~R 

and the ansatz 

R ~ t XR 

one finds 

X n = 1/2 

in agreement with Section 3.1. 
However, for a diffusive type of motion the propagation direction of 

the atoms changes permanently and the mean atomic displacement Ar is 
given by 

Ar = (Dt) 1/2 (16) 
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where D is the diffusion coefficient due to the heat bath coupling. For 
Langevin dynamics, relation (16) replaces r=v th t  which is valid for VR. 
Consequently, the number of atoms arriving at a cluster depends on the 
"mean velocity" 

- -  = ( 1 7 )  
Vav ~ t 

Therefore, in the gain rate gn [Eq. (8b) of Ref. 6] of the condensation- 
evaporation mechanism the thermal velocity vth has to be replaced by v~v 
(17). Concerning the emission of atoms from the cluster one has to take 
into account detailed balance. For diffusion dynamics the atoms effectively 
remain longer in the vicinity of the cluster and recapturing of atoms by the 
cluster is enhanced resulting in a reduction of the loss rate l,, [Eq. (8d) of 
Ref. 6] by a factor of order Vav/Vth. With both identifications one gets 

d-7~ R 7(t) (is) 

with 7 = i/2. The only difference of (18) in comparison to Eq. (14) is the 
replacement of Vth by ray. The ansatz 

~ t XL 

leads to 

1--y 1 
X L - - -  - (19) 

2 4 

in agreement with the behavior discussed in Section 3.2. 

5. S U M M A R Y  A N D  C O N C L U S I O N S  

We have described, analyzed, and compared data obtained from two 
different molecular dynamics simulation techniques which both were 
applied to simulate a system undergoing phase separation by spinodal 
decomposition under isothermal conditions. In the case of the velocity 
rescaling procedure, we found a power law growth for the liquid clusters 
with an exponent X R = 1/2. Also the decay of the excess internal energy 
was found to exhibit a simple t yR behavior with YR = XR. This scenarium 
is readily understandable for the growth of isolated clusters in the 
asymptotic time regime. 

The atomic velocity distribution for both numerical methods is in 
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good agreement with a Maxwell velocity distribution corresponding to the 
desired mean temperature T*=0.45. In contrast to the Langevin 
simulations this result is not self-evident in the case of VR, since this 
method provides no mechanism to establish the proper velocity dis- 
tribution. Another important finding from the Langevin simulatiohs is the 
fast relaxation of the kinetic energy in response to a change of the bath 
temperature. 

From the comparison between the constant temperature MD, the MC, 
and the Langevin simulations, one may conclude that there is less univer- 
sality in cluster growth than originally expected. For example, in MC 
simulations the choosen computer algorithms for the MC-steps becomes an 
integral part of the model. In the same way the results of MD simulations 
are affected by the underlying microscopic dynamics. Note, however, that 
the agreement of the respective growth laws found in MC (MC I in Ref. 11) 
and Langevin simulations is a consequence of the fact that the 
corresponding microscopic dynamics is equivalent in these cases. A similar 
observation has been reported by Meakin e t a / .  (21) for spinodal decom- 
position in a two-component system. 

A P P E N D I X  A 

The power-law behavior 

R(t )  oc t  :c (A1) 

of the mean cluster radius R(t)  can be explained in terms of a conden- 
sation-evaporation mechanism (cf. Section 4). In this Appendix we show 
that a Lifshitz-Slyozov type of analysis (8~ of the same mechanism yields in 
addition 

with 

E ( t ) - E ( o e )  oc t Y (A2) 

Y = - X  (A3) 

confirming equations (11) and (12) in Section 3.3. 
As already discussed by Binder, ~7~ in the asymptotic regime the 

probability p(n, t) to find a cluster with n atoms at time t may be represen- 
ted by a scaling solution 

p(n, t )=  tzfi(~) (A4) 
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where ~ = nt dx and ~ is the appropriate scaling function. Conservation of 
the total number of atoms implies 

Since the last integral has to be time-independent, one obtains 

z = - 2  dJ( (A5) 

for the exponent in (A4). 
For  the surface energy of a cluster with n atoms one has 

E n OC FI (d 1)/d 

Hence, the excess energy is 

E ( 0 - E ( o g ) =  dn E.p(n, 0 

2 t ~X+X(d-~)+~ d~ ~ d -  ~)/~t~(~) 

Employing relation (A5) we obtain the result (A2), (A3) 

E ( t ) - E ( ~ )  ~ t - x  

A P P E N D I X  B 

The concept of the fractal dimension D provides a quantitative 
measure to characterize the structure of the liquid clusters. The number of 
particles N in a cluster of radius R behaves like (23) 

N oc R D (B1) 

We obtained N ( R )  from the cluster size distribution using the algorithm 
outlined in Ref. 24. A least squares fit of the data for N ( R )  to the form (B1) 
yields D with an error of order 0.05. In Fig. 9 the results are plotted versus 
time after the crossover to the scaling regime has occured at the respective 
time t*. The data clearly indicate that D is definitely smaller than the 
Euclidian dimension d--2 .  Independent of the simulation method we find 
D ~  1.8. 
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Fig. 9. Fractal dimension D 
I F =  1.25 ( I ) ,  2.5 (O), 5 (A) l  versus time after crossover to the scaling regime at t*. 

and Langevin dynamics 

This result is consistent with another estimate of D using the coarse- 
grain radial distribution function G(r). For l ~ r ~ R it scales like 4 

G(r) ~ r -A (B2) 

with 

A + D = d  
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